17 resultados para Trace elements

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microarray plays a major role to identify the over- and under-expressed genes. It is a well-known fact that trace elements in our body play a major role in the metabolic processes of all living organisms. In this paper, the microarray studies related to major trace metals are reviewed. This review forms the basis for the converged effort to locate the genes that are either defective and destabilise the concentration of the trace metals or influenced by the changed concentration of the trace metals that are needed for proper functions of the human body, at different parts of the body.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concentrations of heavy metals in the edible tissue of commonly fished species of the Victorian coast of Australia are reported. The metals studied were As, Cd, Cu, Hg, Pb, Se, and Zn and the fish species examined were snapper (Pagruss auratus), flathead (Platycephalus bassenssis and Neoplatycephalus richardsoni), lobster (Jasus edwardsii), and abalone (Haliotis rubra). None of the fish species studied had average concentrations exceeding the maximum levels specified for As, Cd, Hg, and Pb by the Food Standards Australia and New Zealand Food Standards code. Additionally, the concentrations of Cu, Se, and Zn were close to or below the median values generally expected in these species. Essential trace elements Se and Zn were found to be well regulated by all fish species. Although also essential, Cu was not so well regulated, especially in abalone. Nonessential metals As, Cd, and Hg are not regulated in the studied fish and their concentrations in the fish tissue are dependent on size and fishing zone. Metal concentrations were not largely affected by sex. Surprisingly, the concentrations of metals in fish in Port Phillip Bay, a zone, which includes the major cities of Melbourne and Geelong and is known to have high concentrations of metals in the water and sediment, were not consistently higher than those in other less-populated fishing zones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this project was to investigate the effects of oral contraceptives on the nutrient composition of breast milk. The design of the study also allowed the effects of stage of lactation and maternal diet on milk composition to be observed. A prospective study was designed to measure maternal dietary intake and vitamin and trace element concentration in milk and plasma. Vitamin A, ascorbic acid and iron, copper, zinc, manganese, selenium, cobalt, chromium, rubidium and caesium were measured. Two groups of women participated, oral contraceptive users and controls. Fasting milk and blood samples and 24-hour food records were collected from the women once a week for 20 weeks commencing 3-8 weeks post-partum, and 1-2 weeks before they began to take oral contraceptives. Fifteen women participated in the study; 5 took progestogen-only oral contraceptives, 1 took an oestrogen-progestogen oral contraceptive and 9 acted as controls. Progestogen-only oral contraceptives did not affect the milk or plasma concentration of the vitamins and trace elements measured. As only 1 subject took an oestrogen-progestogen preparation no conclusion could be drawn as to its effect. The mean milk and plasma concentration of all nutrients studied did not change significantly with the progression of lactation, with the exception of iron and zinc. The mean milk iron concentration was significantly higher at 16 weeks post-partum than at 8 and 23 weeks post-partum. The mean milk zinc concentration was significantly lower at 23 weeks post-partum than at 8 and 16 weeks post-partum. The infants1 mean estimated daily intakes of ascorbic acid and vitamin A from breast milk were above the U.S. and British Recommended Dietary Allowance for those vitamins. However, their mean estimated intakes of iron, zinc, copper, manganese and selenium were well below the U.S. recommendations. Effects of the maternal dietary intake on milk and plasma composition were variable. Implications of these findings have been discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Pieman River catchment has seen continuous mining of economic deposits of gold, silver, lead, copper, zinc and tin since the 1870’s. Tributaries of this river which receive mining effluent, either directly or from acid mine drainage (AMID), have total metal concentrations considerably above background levels and are of regulatory concern. The lower Pieman River is however classified as a State Reserve in which recreational fishing and tourism are the major activities. It is therefore important that water entering the lower Pieman River from upstream hydroelectric impoundments is of high quality. Metals in natural waters exist in a variety of dissolved, colloidal and particulate forms. The bioavailability and hence toxicity of heavy metal pollutants is very dependant on their physico form. Knowledge of the speciation of a metal in natural aquatic environments is therefore necessary for understanding its geochemical behaviour and biological availability. Complexation of metal ions by natural ligands in aquatic systems is believed to play a significant role in controlling their chemical speciation. This study has investigated temporal and spatial variation in complexation of metal ions in the Pieman River. The influence of pH, temperature, organic matter, salinity, ionic strength and time has been investigated in a series of field studies and in laboratory-based experiments which simulated natural and anthropogenic disturbances. Labile metals were measured using two techniques in various freshwater and estuarine environments. Diffusive gradients in thin-films (DGT) allowed in situ measurement of solution speciation whilst differential pulse anodic stripping voltammetry (DPASV) was used to measure labile metal species in water samples collected from the catchment. Organic complexation was found to be a significant regulating mechanism for copper speciation and the copper-binding ligand concentration usually exceeded the total copper concentration in the river water. Complexation was highly dependent on pH and at the river-seawater interface was also regulated by salinity, probably as a result of competitive complexation by major ions in seawater (eg. Ca 2+ ions). Zinc complexation was also evident, however total zinc concentrations in the water column often far exceeded the potential binding capacity of available ligands. In addition to organic complexation, Zn speciation may also be associated with adsorption by flocculated or resuspended colloidal Mn and/or Fe oxyhydroxides. Metal ion complexation and hence speciation was found to be highly variable within the Pieman River catchment. This presents major difficulties for environmental managers, as it is therefore not possible to make catchment-wide assumptions about the bioavailability of these metals. These results emphasise the importance of site-specific sampling protocols and speciation testing, ideally incorporating continuous, in situ monitoring.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intracellular zinc homeostasis is strictly regulated by zinc binding proteins and zinc transporters. In the present study, we quantified in a first global view the expression of all characterized human zinc exporters (hZnT-1-9) in different leukocyte subsets in response to zinc supplementation and depletion and analyzed their influence on alterations in the intracellular zinc concentration. We found that hZnT-1 is the most regulated zinc exporter. Furthermore, we discovered that hZnT-4 is localized in the plasma membrane similar to hZnT-1. hZnT-4 is most highly expressed in Molt-4, up-regulated after treatment with PHA and is responsible for the measured decrease of intracellular zinc content after high zinc exposure. In addition, we found that hZnT-5, hZnT-6, and hZnT-7 in Raji as well as hZnT-6 and hZnT-7 in THP-1 are up-regulated in response to cellular zinc depletion. Those zinc exporters are all localized in the Golgi network, and this type of regulation explains the observed zinc increase in both cell types after up-regulation of their expression during zinc deficiency and, subsequently, high zinc exposure. Furthermore, we detected, for the first time, the expression of hZnT-8 in peripheral blood lymphocytes, which varied strongly between individuals. While hZnT-2 was not detectable, hZnT-3 and hZnT-9 were expressed at low levels. Further on, the amount of expression was higher in primary cells than in cell lines. These data provide insight into the regulation of intracellular zinc homeostasis in cells of the immune system and may explain the variable effects of zinc deficiency on different leukocyte subsets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Copper is an essential micronutrient that is particularly important during pregnancy for normal fetal development. This study determined the mechanisms by which copper is transported from the maternal circulation to the fetal circulation via the placenta and how this transport is regulated by maternal hormone levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the morphological responses of Late Permian brachiopods to environmental changes. Quantitative analysis of body size data from Permian–Triassic brachiopods has demonstrated significant, directional changes in body size before, during and after the Late Permian mass extinction event. Brachiopod size significantly reduced before and during the extinction interval, increased for a short time in more extinction-resistant taxa in the latter stages of extinction and then dramatically reduced again across the Permian ⁄ Triassic boundary. Relative abundances of trace elements and acritarchs demonstrate that the body size reductions which happened before, during and after extinction were driven by primary productivity collapse, whereas declining oxygen levels had less effect. An episode of size increase in two of the more extinction-resistant brachiopod species is unrelated to environmental change and possibly was the result of reduced interspecific competition for resources following the extinction of competitors. Based on the results of this study, predictions can be made for the possible responses of modern benthos to present-day environmental changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co2+, Cu2+, Mn2+, Ni2+, and Zn2+ and the non-essential divalent cation Cd2+ in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5 μM Cd2+, 2 μM Co2+, 0.5 μM Cu2+, 500 μM Mn2+, 1 μM Ni2+, and 18 μM Zn2+. Cells exposed to these non-toxic concentrations with combinations of Zn2+ and Cd2+, Zn2+ and Co2+, Zn2+ and Cu2+ or Zn2+ and Ni2+, had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500 μM Mn2+ showed similar growth compared to the untreated controls. Metal levels were measured after one and 72 h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using 65Zn showed that after 72 h of exposure Zn2+ uptake was reduced by most metals particularly 0.5 μM Cd2+, while 2 μM Co2+ increased Zn2+ uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the Holocene palaeo-environmental record of the Tuggerah Lake barrier estuary on the south-east coast of Australia to determine the influence of local, regional and global environmental changes on estuary development. Using multi-proxy approaches, we identified significant down-core variation in sediment cores relating to sea-level rise and regional climate change. Following erosion of the antecedent land surface during the post-glacial marine transgression, sediment began to accumulate at the more seaward location at ~8500. years before present, some 1500. years prior to barrier emplacement and ~4000. years earlier than at the landward site. The delay in sediment accumulation at the landward site was a consequence of exposure to wave action prior to barrier emplacement, and due to high river flows of the mid-Holocene post-barrier emplacement. As a consequence of the mid-Holocene reduction in river flows, coupled with a moderate decline in sea-level, the lake experienced major changes in conditions at ~4000. years before present. The entrance channel connecting the lake with the ocean became periodically constricted, producing cyclic alternation between intervals of fluvial- and marine-dominated conditions. Overall, this study provides a detailed, multi-proxy investigation of the physical evolution of Tuggerah Lake with causative environmental processes that have influenced development of the estuary.